
ciangottini@pg.infn.it ROOT User workshop 2022

CMS experience at INFN with
distRDF over HTCondor

D. Ciangottini
on behalf of the INFN/CMS AF team

ciangottini@pg.infn.it ROOT User workshop 2022

Outline
● INFN analysis infrastructure objectives
● Going interactive with RDF

○ evolving toward a declarative and interactive paradigm
● Seamlessly distribute tasks via DASK
● Real-life implementation of a CMS analysis
● Preliminary performance testing
● Plans

Contributors

- Diego Ciangottini
- Daniele Spiga
- Tommaso Tedeschi
- Mirco Tracolli
- Tommaso Boccali
- Massimo Biasotto
- Massimo Sgaravatto
- Stefano Nicotri
- Francesco Failla

Also thanks to
ROOT/SWAN
developers for the
support

- Enrico Guiraud

- Enric Tejedor

- Vincenzo Padulano

ciangottini@pg.infn.it ROOT User workshop 2022

What are we talking about (in a nutshell)
An R&D project started at the end 2021 to study if / how to improve resources usage
for data analysis and (more challenging) how to enable the exploitation of new
approaches, new paradigms for analysing data at CMS. Looking at Phase2 but
targeting already Run3

The initially focus has been almost completely on computing and technological related
matters:

- So far we did a feasibility study putting together several pieces and tested various capabilities for a
resource integration model

- Actually also early tests with real analysis has been done

⇒ Spoiling: things are progressing nicely so we are looking for a step forwards now
3

ciangottini@pg.infn.it ROOT User workshop 2022

One objective: go declarative!
● Avoid wheels, do physics

○ Do not code event loops, but rather declare only what
you want to do in the end

● Let the framework to optimize things
○ No configuration for data splitting or for explicit

multi-threading
○ Get the best throughput out of the infrastructure

● Share and reuse “code for humans”
○ Easier to debug
○ Harder to get lost

4

Fu
tu

re
 a

na
ly

si
s

to
ol

s

Ok CMS, measure the
Higgs boson mass in 2024

dataset

Run everywhere seamlessly
 from 1 to 1000+ cores

Get directly
the merged result

Extracted from
Rizzi’s deck

ciangottini@pg.infn.it ROOT User workshop 2022

User’s perspective
Fast turnaround : how to allow the user to analize billions on NanoAOD
within N hours

- fast iteration time is essential for debugging experimental/theoretical/technical issues and for
developing/improving the analysis

- For O(billions) of events this means event throughput in the MHz

Instead of..
- Submit O(1000) single core jobs to condor batch system reading from mass storage, writing

O(200MB) of histograms to afs
- Resubmit the fraction of jobs which failed the first time

- and the others which failed the second time..
- Merge

5

ciangottini@pg.infn.it ROOT User workshop 2022

What do we need?
A system that grants access to computing resources for analysis and enables a
hybrid model: batch and interactive patterns –> Not a one size fits all solution

Interactive - “Read this as: I can get a Jupyter notebook as big as a Tier2”
- Transparently parallelize over a huge amount of cores allows implementing the interactivity
- I’m writing Jupyter, you can read it as distributed python
- And more in general mitigate/avoid user waiting idle for grid jobs

Batch like processing - “Read this as: I have a place where I can submit (i.e
condor_submit) my analysis jobs”

- Yes, “yet another batch”... completely dedicated to analysis

6

ciangottini@pg.infn.it ROOT User workshop 2022

HW perspectives: the vision

Behind the scene: see this as a continuum
implementation via HTCondor + Dask

- “Grid vs Cloud vs HPC is not anymore a user issue“.
Everything is hidden behind a single Hub

We (CMS/INFN) have a distributed and pledged
resources topology

- Integrate everything, possibly even opportunistic and
“private” clusters

Not a single solution fits everything (again)
- We need to test various configurations, to measure

the costs/benefits and design future models A cluster/ a single fat node / a cluster of fat nodes…

7

ciangottini@pg.infn.it ROOT User workshop 2022

Current Status
We have developed an e2e
testbed system which is
now available

A cluster hosted at CNAF (INFN-Cloud)
- Central services
- Fraction of local resources

T2-Legnaro is providing flat O(100)
cores a seed that can be extended -
ready to provide more on-demand

Bari
Legnaro

Pisa
Roma IN

FN
-C

lo
ud

 @
C

N
A

F

INFN-Cloud @CNAF

Cloud Veneto
@PD

M100@CINECA

8

Almost all italian Tier2 have been
functionally tested

ciangottini@pg.infn.it ROOT User workshop 2022

Interactive via distRDF: first use case

A VBS SSWW analysis based on NanoAOD inputs (~plain
ROOT files) is being ported (credits to T. Tedeschi) from
legacy approach (nanoAOD-tools/plain PyROOT-based) to
RDataFrame in order to obtain:

● Enhanced user experience thanks to the modern
high-level declarative interface

● Improved efficiency thanks to intrinsic parallelization
● Optimized operations on data

○ obtained by merging analysis steps
● distribute workflows on different back-ends with ~0

changes in code base
9

VBS SSWW with a light lepton and
an hadronic tau in final state on full
Run2 (NanoAOD)

ciangottini@pg.infn.it ROOT User workshop 2022

Legacy →distRDF migration

10

Current implementation RDF implementation

Preskimming via CRAB (NanoAOD-Tools
postprocessor)

Postselection via HTCondor (plain PyROOT
script + some utils from NanoAOD-Tools)

Output files merging (PyROOT script
@lxplus)

Histogramming (PyROOT script @lxplus)

Fo
r

ea
ch

 s
ys

te
m

at
ic

 v
ar

ia
ti

on

Preskimming interactively via RDataFrame
on JupyterLab

Postselection and histogramming
interactively via RDataFrame on JupyterLab

(only one event loop for all variations)

Plotting (PyROOT script @lxplus) Plotting (PyROOT)

Merging step and
systematic variations

are done automatically

ciangottini@pg.infn.it ROOT User workshop 2022

How the code looks like, in a nutshell

Main code schema used in both pre and post selection:

11

def inizialization_function():
 ROOT.gInterpreter.Declare(‘#include “utils_functions.h”’)

df = ROOT.RDF.Experimental.Distributed.Dask.RDataFrame(“Events”, chain, nPartitions = N, client = client) #define the dataframe

df_processed = df.Define(“column_c”, “function(column_a, column_b)”)\
 .Filter(“filtering_function(column_d)”, “A filter”)
 ...

book a snapshot (i.e. a saving)-> used in preselection
opts = ROOT.RDF.RSnapshotOptions()
opts.fLazy = True
df_lazy_snapshot = df_processed.Snapshot(“treeName”, “fileName.root”, opts)

book an histogram -> used in postselection
df_lazy_histo = df_lazy_snapshot.Histo1D(“column_a”, “weights_column”)

to trigger execution
histos = df_lazy_histo.GetValue()

to inspect data
df_saved.Display([“column_a”, “column_b”, “column_c”], nRows = 1).Print()
+-----+----------+----------+----------+
| Row | column_a | column_b | column_c |
+-----+----------+----------+----------+
| 0 | -1 | -1 | -1 |
+-----+----------+----------+----------+

C++ functions that
manipulates RVec
objects
Target of the porting

ciangottini@pg.infn.it ROOT User workshop 2022

Post-selection…. in a graph

12

All .root files are read into
the same RDataFrame

VBS
selec
tion

l+tau
selec
tion

...

Filter
data

Filter
ZZ

His
to1
D

His
to1
D

...

Fake
selectio
n

df_afterpre

ZZ histos

Data-driven
fake histos

e+
tau

mu
+
tau

...

His
to1
D

His
to1
D

...
e+
tau

mu
+
tau

...
...

His
to1
D

His
to1
D

...

e+
tau

mu
+
tau

...
SR
selec
tion

...

SR
selec
tion

Using a sample flag

All necessary
definitions

ciangottini@pg.infn.it ROOT User workshop 2022

Systematic variations
Moving from the nanoAOD-tools based analysis was reasonably straightforward
to implement in RDF via .Vary method:

nominal_hx = df.Vary("pt", "ROOT::RVecD{pt*0.9, pt*1.1}", ["down", "up"])

 .Filter("pt > k")

 .Define("x", someFunc, ["pt"])

 .Histo1D("x")

hx = ROOT.RDF.Experimental.VariationsFor(nominal_hx)

hx["nominal"].Draw()

hx["pt:down"].Draw("SAME")

13

ciangottini@pg.infn.it ROOT User workshop 2022

Preliminary performance comparison
Overall time-to-histogram for post-selection step

● Legacy approach on AF (using 90 dedicated
WNs):

○ 6h03m, divided into:
■ HTCondor processing: 5h27m
■ Data transfer: 0h17m
■ Merging: 0h20m
■ Histogram production: 0h03m

● RDF + Dask approach on AF (using 90 Dask
workers):

○ 3h05m using 180 partitions, results obtained with no
further processing step

The inefficiencies on the pure HTCondor ways can
have multiple sources and might be optimized, still it
is an encouraging first outcome.

Similar measurements for pre-selection steps are planned!

Preselected ReReco 2017 data + MC (9605 files, 1.5 TB, 953 million events)

Performance results require further
controlled tests and understanding, but
still a good starting point

ciangottini@pg.infn.it ROOT User workshop 2022

How we see the next steps

1. Starting little: Use the current proof of concept
■ Explore new ideas…
■ Identify problems, bottlenecks
■ Define user requirements

2. Co-design: facilitate discussions between users and computing people
■ Provide feedback and discuss how to solve problems
■ New features requests and needs

3. Extend the proof of concept by meaning
■ Identify specific development
■ Implement technical solutions and deploy new features
■ Add computing resources, eventually configure the underlying setup to adapt to

…

The mantra should be “Starting little and expand step by step, co-design and iterate”

15

ciangottini@pg.infn.it ROOT User workshop 2022

Workplan
● Additional volunteer users have been involved

○ Two use cases are closely working to enter the test phase
○ Both of them are already using RDF locally in the current analysis implementation

● Scale
○ Ready to get O(1k) cores for scale tests

■ In particular we want to make measures on pre-selection step
○ Verify multi-user scenario

● Performance measurements on pre-selection step
○ Heavier from I/O perspective

● Debugging some occasional Dask task failure with no clear error pattern
● Improving automatic retry of failed tasks

ciangottini@pg.infn.it ROOT User workshop 2022

Conclusions
● Overall the transition from a “legacy” analysis code looks reasonably

easy
○ At least for analyses based on NTuple-like data source
○ Good time to provide early feedback and to interact with developers

● The capability to scale seamlessly what I currently run locally is a great
added value

○ The preliminary performance test is also showing pretty good results
● Still to improve on distributed logging and debugging procedure

○ Sort of DASK/HTCondor native problem to be honest
● More users joining means different pattern and probably different

requirements
○ Really looking forward to it!

ciangottini@pg.infn.it ROOT User workshop 2022

BACKUP

ciangottini@pg.infn.it ROOT User workshop 2022

What can I do in there?
● Batch/Legacy

○ Run your analysis on a batch system with
resources collected over sites

○ Run your analysis on a batch system targeting
specifically HPC resources

● Quasi-interactive python scripting
○ On-demand leverage big-notebooks on big

machines (hpc node, dedicate hw) and run
locally with a portable and ready-to-use
environment

● Interactive python notebooks
○ Effortlessly scale local code with distributed

mode RDataFrame workflows over a T2 site or
over dedicated/specialized resources

○ Edit an reproduce plot interactively
19

Demo tomorrow

Demo tomorrow

